Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 126, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997067

RESUMEN

The growth of skin appendages, such as hair, feathers and scales, depends on terminal differentiation of epidermal keratinocytes. Here, we investigated keratinocyte differentiation in avian scutate scales. Cells were isolated from the skin on the legs of 1-day old chicks and subjected to single-cell transcriptomics. We identified two distinct populations of differentiated keratinocytes. The first population was characterized by mRNAs encoding cysteine-rich keratins and corneous beta-proteins (CBPs), also known as beta-keratins, of the scale type, indicating that these cells form hard scales. The second population of differentiated keratinocytes contained mRNAs encoding cysteine-poor keratins and keratinocyte-type CBPs, suggesting that these cells form the soft interscale epidermis. We raised an antibody against keratin 9-like cysteine-rich 2 (KRT9LC2), which is encoded by an mRNA enriched in the first keratinocyte population. Immunostaining confirmed expression of KRT9LC2 in the suprabasal epidermal layers of scutate scales but not in interscale epidermis. Keratinocyte differentiation in chicken leg skin resembled that in human skin with regard to the transcriptional upregulation of epidermal differentiation complex genes and genes involved in lipid metabolism and transport. In conclusion, this study defines gene expression programs that build scutate scales and interscale epidermis of birds and reveals evolutionarily conserved keratinocyte differentiation genes.


Asunto(s)
Escamas de Animales/metabolismo , Proteínas Aviares/genética , Diferenciación Celular/genética , Pollos/genética , Perfilación de la Expresión Génica , Queratinocitos/metabolismo , Análisis de la Célula Individual , Transcriptoma , Escamas de Animales/citología , Animales , Animales Recién Nacidos , Proteínas Aviares/metabolismo , Pollos/metabolismo , Evolución Molecular , Extremidades , RNA-Seq , Especificidad de la Especie , Transcripción Genética
2.
Genes (Basel) ; 12(10)2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34680960

RESUMEN

Transglutaminase 1 (TGM1) is a membrane-anchored enzyme that cross-links proteins during terminal differentiation of epidermal and esophageal keratinocytes in mammals. The current genome assembly of the chicken, which is a major model for avian skin biology, does not include an annotated region corresponding to TGM1. To close this gap of knowledge about the genetic control of avian cornification, we analyzed RNA-sequencing reads from organotypic chicken skin and identified TGM1 mRNA. By RT-PCR, we demonstrated that TGM1 is expressed in the skin and esophagus of chickens. The cysteine-rich sequence motif required for palmitoylation and membrane anchorage is conserved in the chicken TGM1 protein, and differentiated chicken keratinocytes display membrane-associated transglutaminase activity. Expression of TGM1 and prominent transglutaminase activity in the esophageal epithelium was also demonstrated in the zebra finch. Altogether, the results of this study indicate that TGM1 is conserved among birds and suggest that chicken keratinocytes may be a useful model for the study of TGM1 in non-mammalian cornification.


Asunto(s)
Proteínas Aviares/genética , Esófago/metabolismo , Piel/metabolismo , Transglutaminasas/genética , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Embrión de Pollo , Secuencia Conservada , Esófago/enzimología , Evolución Molecular , Pinzones , Piel/enzimología , Transglutaminasas/química , Transglutaminasas/metabolismo
3.
J Invest Dermatol ; 141(12): 2829-2837, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34116064

RESUMEN

The function of the skin as a barrier against a dry environment evolved in a common ancestor of terrestrial vertebrates such as mammals and birds. However, it is unknown which elements of the genetic program of skin barrier formation are evolutionarily ancient and conserved. In this study, we determined the transcriptomes of chicken keratinocytes (KCs) grown in monolayer culture and in an organotypic model of avian skin. The differentiation-associated changes in global gene expression were compared with previously published transcriptome changes of human KCs cultured under equivalent conditions. We found that specific keratins and genes of the epidermal differentiation complex were upregulated during the differentiation of both chicken and human KCs. Likewise, the transcriptional upregulation of genes that control the synthesis and transport of lipids, anti-inflammatory cytokines of the IL-1 family, protease inhibitors, and other regulators of tissue homeostasis was conserved in the KCs of both species. However, some avian KC differentiation-associated transcripts lack homologs in mammals and vice versa, indicating a genetic basis for taxon-specific skin features. The results of this study reveal an evolutionarily ancient program in which dynamic gene transcription controls the metabolism and transport of lipids as well as other core processes during terrestrial skin barrier formation.


Asunto(s)
Pollos/metabolismo , Epidermis/metabolismo , Regulación de la Expresión Génica , Animales , Evolución Biológica , Diferenciación Celular , Células Cultivadas , Queratinocitos/citología , Transcripción Genética , Transcriptoma
4.
Sci Rep ; 11(1): 12334, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112911

RESUMEN

Major protein components of the mammalian skin barrier are encoded by genes clustered in the Epidermal Differentiation Complex (EDC). The skin of cetaceans, i.e. whales, porpoises and dolphins, differs histologically from that of terrestrial mammals. However, the genetic regulation of their epidermal barrier is only incompletely known. Here, we investigated the EDC of cetaceans by comparative genomics. We found that important epidermal cornification proteins, such as loricrin and involucrin are conserved and subtypes of small proline-rich proteins (SPRRs) are even expanded in numbers in cetaceans. By contrast, keratinocyte proline rich protein (KPRP), skin-specific protein 32 (XP32) and late-cornified envelope (LCE) genes with the notable exception of LCE7A have been lost in cetaceans. Genes encoding proline rich 9 (PRR9) and late cornified envelope like proline rich 1 (LELP1) have degenerated in subgroups of cetaceans. These data suggest that the evolution of an aquatic lifestyle was accompanied by amplification of SPRR genes and loss of specific other epidermal differentiation genes in the phylogenetic lineage leading to cetaceans.


Asunto(s)
Cetáceos/genética , Epidermis/crecimiento & desarrollo , Evolución Molecular , Eliminación de Gen , Secuencia de Aminoácidos/genética , Animales , Cetáceos/crecimiento & desarrollo , Epidermis/metabolismo , Duplicación de Gen/genética , Genómica , Humanos , Queratinocitos/metabolismo , Filogenia
5.
Redox Biol ; 37: 101583, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32713735

RESUMEN

The epidermis is a multi-layered epithelium that consists mainly of keratinocytes which proliferate in its basal layer and then differentiate to form the stratum corneum, the skin's ultimate barrier to the environment. During differentiation keratinocyte function, chemical composition, physical properties, metabolism and secretion are profoundly changed. Extrinsic or intrinsic stressors, like ultraviolet (UV) radiation thus may differently affect the epidermal keratinocytes, depending on differentiation stage. Exposure to UV elicits the DNA damage responses, activation of pathways which detoxify or repair damage or induction of programmed cell death when the damage was irreparable. Recently, rapid diversion of glucose flux into the pentose phosphate pathway (PPP) was discovered as additional mechanism by which cells rapidly generate reduction equivalents and precursors for nucleotides - both being in demand after UV damage. There is however little known about the correlation of such metabolic activity with differentiation state, cell damage and tissue localization of epidermal cells. We developed a method to correlate the activity of G6PD, the first and rate-limiting enzyme of this metabolic UV response, at cellular resolution to cell type, differentiation state, and cell damage in human skin and in organotypic reconstructed epidermis. We thereby could verify rapid activation of G6PD as an immediate UVB response not only in basal but also in differentiating epidermal keratinocytes and found increased activity in cells which initiated DNA damage responses. When keratinocytes had been UVB irradiated before organotypic culture, their distribution within the skin equivalent was abnormal and the G6PD activity was reduced compared to neighboring cells. Finally, we found that the anti-diabetic and potential anti-aging drug metformin strongly induced G6PD activity throughout reconstructed epidermis. Activation of the protective pentose phosphate pathway may be useful to enhance the skin's antioxidant defense systems and DNA damage repair capacity on demand.


Asunto(s)
Estrés Oxidativo , Preparaciones Farmacéuticas , Piel , Rayos Ultravioleta , Adulto , Diferenciación Celular , Células Cultivadas , Humanos , Queratinocitos , Preparaciones Farmacéuticas/metabolismo , Piel/metabolismo , Rayos Ultravioleta/efectos adversos
6.
Exp Dermatol ; 29(4): 376-379, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32012357

RESUMEN

Long non-coding RNAs have been implicated in the regulation of a plethora of biological processes, yet it has been challenging to verify that they are truly not coding for proteins. Terminal differentiation-induced non-coding RNA (TINCR) is a 3.7-kilobase mRNA that is highly abundant in epidermal keratinocytes prior to cornification. Here, we report the presence of an evolutionarily conserved open reading frame in TINCR and the identification of peptides derived from this open reading frame in the proteome of human stratum corneum. Our results demonstrate that TINCR is a protein-coding RNA and suggest that the TINCR-encoded protein is involved in keratinocyte cornification.


Asunto(s)
Células Epidérmicas/metabolismo , Epidermis/metabolismo , Queratinocitos/citología , ARN Largo no Codificante/metabolismo , Piel/metabolismo , Evolución Biológica , Diferenciación Celular , Humanos , Espectrometría de Masas , Sistemas de Lectura Abierta , Péptidos/química , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Transcripción Genética , Ubiquitina/metabolismo
7.
Mol Biol Evol ; 37(4): 982-993, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31822906

RESUMEN

Terrestrial vertebrates have evolved hard skin appendages, such as scales, claws, feathers, and hair that play crucial roles in defense, predation, locomotion, and thermal insulation. The mechanical properties of these skin appendages are largely determined by cornified epithelial components. So-called "hair keratins," cysteine-rich intermediate filament proteins that undergo covalent cross-linking via disulfide bonds, are the crucial structural proteins of hair and claws in mammals and hair keratin orthologs are also present in lizard claws, indicating an evolutionary origin in a hairless common ancestor of amniotes. Here, we show that reptiles and birds have also other cysteine-rich keratins which lack cysteine-rich orthologs in mammals. In addition to hard acidic (type I) sauropsid-specific (HAS) keratins, we identified hard basic (type II) sauropsid-specific (HBS) keratins which are conserved in lepidosaurs, turtles, crocodilians, and birds. Immunohistochemical analysis with a newly made antibody revealed expression of chicken HBS1 keratin in the cornifying epithelial cells of feathers. Molecular phylogenetics suggested that the high cysteine contents of HAS and HBS keratins evolved independently from the cysteine-rich sequences of hair keratin orthologs, thus representing products of convergent evolution. In conclusion, we propose an evolutionary model in which HAS and HBS keratins evolved as structural proteins in epithelial cornification of reptiles and at least one HBS keratin was co-opted as a component of feathers after the evolutionary divergence of birds from reptiles. Thus, cytoskeletal proteins of hair and feathers are products of convergent evolution and evolutionary co-option to similar biomechanical functions in clade-specific hard skin appendages.


Asunto(s)
Evolución Molecular , Queratinas/genética , Vertebrados/genética , Animales , Cisteína , Plumas/química , Filogenia
8.
Protoplasma ; 256(5): 1257-1265, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31037447

RESUMEN

Feathers are the most complex skin appendages of vertebrates. Mature feathers consist of interconnected dead keratinocytes that are filled with heavily cross-linked proteins. Although the molecular architecture determines essential functions of feathers, only few feather proteins have been characterized with regard to their amino acid sequences and evolution. Here, we identify Epidermal Differentiation protein containing DPCC Motifs (EDDM) as a cysteine-rich protein that has co-evolved with other feather proteins. The EDDM gene is located within the avian epidermal differentiation complex (EDC), a cluster of genes that has originated and diversified in amniotes. EDDM shares the exon-intron organization with EDC genes of other amniotes, including humans, and a gene encoding an EDDM-like protein is present in crocodilians, suggesting that avian EDDM arose by sequence modification of an epidermal differentiation gene present in a common ancestor of archosaurs. The EDDM protein contains multiple sequence repeats and a higher number of cysteine residues than any other protein encoded in the EDC. Immunohistochemical analysis of chicken skin and skin appendages showed expression of EDDM in barb and barbules of feathers as well as in the subperiderm on embryonic scutate scales. These results suggest that the diversification and differential expression of EDDM, besides other EDC genes, was instrumental in facilitating the evolution of the most complex molecular architecture of feathers.


Asunto(s)
Cisteína/metabolismo , Plumas/química , Animales , Aves , Pollos , Humanos
9.
Genome Biol Evol ; 10(2): 694-704, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29447391

RESUMEN

The epidermis of amniotes forms a protective barrier against the environment and the differentiation program of keratinocytes, the main cell type in the epidermis, has undergone specific alterations in the course of adaptation of amniotes to a broad variety of environments and lifestyles. The epidermal differentiation complex (EDC) is a cluster of genes expressed at late stages of keratinocyte differentiation in both sauropsids and mammals. In the present study, we identified and analyzed the crocodilian equivalent of the EDC. The gene complement of the EDC of both the American alligator and the saltwater crocodile were determined by comparative genomics, de novo gene prediction and identification of EDC transcripts in published transcriptome data. We found that crocodilians have an organization of the EDC similar to that of their closest living relatives, the birds, with which they form the clade Archosauria. Notable differences include the specific expansion of a subfamily of EDC genes in crocodilians and the loss of distinct ancestral EDC genes in birds. Identification and comparative analysis of crocodilian orthologs of avian feather proteins suggest that the latter evolved by cooption and sequence modification of ancestral EDC genes, and that the amplification of an internal highly cysteine-enriched amino acid sequence motif gave rise to the feather component epidermal differentiation cysteine-rich protein in the avian lineage. Thus, sequence diversification of EDC genes contributed to the evolutionary divergence of the crocodilian and avian integuments.


Asunto(s)
Caimanes y Cocodrilos/genética , Evolución Biológica , Aves/genética , Epidermis , Plumas , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Diferenciación Celular , Femenino , Sintenía , Tortugas/genética
10.
Sci Rep ; 7(1): 17446, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29234126

RESUMEN

The homeostasis of the epidermis depends on keratinocyte differentiation and cornification, a mode of programmed cell death that does not elicit inflammation. Here, we report that cornification is associated with the expression of specific genes that control multiple steps of pyroptosis, another form of cell death that involves the processing and release of interleukin-1 family (IL1F) cytokines. Expression levels of pro-inflammatory IL1A and IL1B and of the pyroptotic pore-forming gasdermin (GSDM) D were downregulated during terminal differentiation of human keratinocytes in vitro. By contrast, negative regulators of IL-1 processing, including NLR family pyrin domain containing 10 (NLRP10) and pyrin domain-containing 1 (PYDC1), the anti-inflammatory IL1F members IL-37 (IL1F7) and IL-38 (IL1F10), and GSDMA, were strongly induced in differentiated keratinocytes. In human tissues, these keratinocyte differentiation-associated genes are expressed in the skin at higher levels than in any other organ, and mammalian species, that have lost the epidermal cornification program during evolution, i.e. whales and dolphins, lack homologs of these genes. Together, our results suggest that human epidermal cornification is accompanied by a tight control of pyroptosis and warrant further studies of potential defects in the balance between cornification and pyroptosis in skin pathologies.


Asunto(s)
Epidermis/metabolismo , Queratinocitos/metabolismo , Organogénesis/fisiología , Piroptosis/fisiología , Animales , Evolución Biológica , Células Cultivadas , Citocinas/metabolismo , Células Epidérmicas/metabolismo , Expresión Génica , Genómica , Humanos , Especificidad de la Especie
11.
Exp Dermatol ; 26(4): 352-358, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27943452

RESUMEN

PSORS1C2 is a gene located between coiled-coil alpha-helical rod protein 1 (CCHCR1) and corneodesmosin (CDSN) within the psoriasis susceptibility locus 1 (PSORS1). Here, we performed a comparative genomics analysis of the as-yet incompletely characterized PSORS1C2 gene and determined its expression pattern in human tissues. In contrast to CCHCR1, which is common to all vertebrates investigated, PSORS1C2 and CDSN are present exclusively in mammals, indicating that the latter genes have originated after the evolutionary divergence of mammals and reptiles. CDSN is conserved in aquatic mammals, whereas PSORS1C2 orthologs contain gene-inactivating frame shift mutations in whales and dolphins, in which the epidermal differentiation programme has degenerated. Reverse-transcription PCR screening demonstrated that, in human tissues, PSORS1C2 is expressed principally in the epidermis and weakly in the thymus. PSORS1C2 mRNA was strongly upregulated during terminal differentiation of human keratinocytes in vitro. Immunohistochemistry revealed exclusive expression of PSORS1C2 in the granular layer of the epidermis and in cornifying epithelial cells of Hassall's corpuscles of the thymus. In summary, our results identify PSORS1C2 as a keratinocyte cornification-associated protein that has originated in evolutionarily basal mammals and has undergone gene inactivation in association with the loss of the skin barrier function in aquatic mammals.


Asunto(s)
Diferenciación Celular/genética , Expresión Génica , Queratinocitos/fisiología , Mamíferos/genética , ARN Mensajero/metabolismo , Animales , Delfín Mular/genética , Bovinos/genética , Bases de Datos Genéticas , Epidermis/metabolismo , Células Epiteliales/metabolismo , Genómica , Glicoproteínas/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular , Marsupiales/genética , Proteínas de la Membrana/genética , Zarigüeyas/genética , Filogenia , Proteínas , Cachalote/genética , Timo/metabolismo , Regulación hacia Arriba , Orca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...